Skip to content

Test Scenarios

Overview

This page provides comprehensive test scenarios that you can use as templates for validating your Content and Variants. Each scenario includes complete context configuration and explains what it's designed to test.

Geographic Targeting Scenarios

Scenario 1: Major Market Testing

Test how your variants respond to users from different major markets.

US Market User

{
  "geo": {
    "country": "United States",
    "city": "New York",
    "region": "New York"
  },
  "time": {
    "hour": "14",
    "weekday": "Tuesday"
  },
  "attribute": {
    "user_name": "Sarah",
    "language": "en"
  }
}

European Market User

{
  "geo": {
    "country": "Germany",
    "city": "Berlin",
    "region": "Brandenburg"
  },
  "time": {
    "hour": "14",
    "weekday": "Tuesday"
  },
  "attribute": {
    "user_name": "Anna",
    "language": "de"
  }
}

Asian Market User

{
  "geo": {
    "country": "Japan",
    "city": "Tokyo"
  },
  "time": {
    "hour": "14",
    "weekday": "Tuesday"
  },
  "attribute": {
    "user_name": "Yuki",
    "language": "ja"
  }
}

Scenario 2: Regional Targeting

Test variants designed for specific regions within countries.

California User

{
  "geo": {
    "country": "United States",
    "city": "San Francisco",
    "region": "California"
  },
  "attribute": {
    "user_name": "Mike",
    "time_zone": "PST"
  }
}

Texas User

{
  "geo": {
    "country": "United States",
    "city": "Austin",
    "region": "Texas"
  },
  "attribute": {
    "user_name": "John",
    "time_zone": "CST"
  }
}

Scenario 3: Unknown Location

Test fallback behavior when location data is missing or incomplete.

Completely Unknown Location

{
  "geo": {
    "country": "",
    "city": "",
    "region": ""
  },
  "attribute": {
    "user_name": "Anonymous"
  }
}

Partial Location Data

{
  "geo": {
    "country": "United States",
    "city": "",
    "region": ""
  },
  "attribute": {
    "user_name": "PartialUser"
  }
}

Time-Based Scenarios

Scenario 4: Business Hours Testing

Test variants designed for different times of day.

Morning Business Hours

{
  "time": {
    "hour": "9",
    "weekday": "Monday",
    "today": "2024-03-18"
  },
  "geo": {
    "country": "United States",
    "city": "Chicago"
  },
  "attribute": {
    "user_name": "Alex"
  }
}

Afternoon Peak Hours

{
  "time": {
    "hour": "14",
    "weekday": "Wednesday",
    "today": "2024-03-20"
  },
  "geo": {
    "country": "United States",
    "city": "Denver"
  },
  "attribute": {
    "user_name": "Jordan"
  }
}

After Hours

{
  "time": {
    "hour": "19",
    "weekday": "Friday",
    "today": "2024-03-22"
  },
  "geo": {
    "country": "United States",
    "city": "Seattle"
  },
  "attribute": {
    "user_name": "Casey"
  }
}

Scenario 5: Weekend vs Weekday

Test different content for weekend and weekday users.

Weekend User

{
  "time": {
    "hour": "11",
    "weekday": "Saturday",
    "today": "2024-03-23"
  },
  "geo": {
    "country": "Canada",
    "city": "Toronto"
  },
  "attribute": {
    "user_name": "Sam",
    "weekend_shopper": "true"
  }
}

Weekday User

{
  "time": {
    "hour": "12",
    "weekday": "Tuesday",
    "today": "2024-03-19"
  },
  "geo": {
    "country": "Canada",
    "city": "Vancouver"
  },
  "attribute": {
    "user_name": "Taylor",
    "work_break": "true"
  }
}

Scenario 6: Seasonal Content

Test seasonal and holiday-specific variants.

Holiday Season

{
  "time": {
    "today": "2024-12-15",
    "month": "December",
    "quarter": "4",
    "hour": "16",
    "weekday": "Sunday"
  },
  "geo": {
    "country": "United States",
    "city": "Boston"
  },
  "attribute": {
    "user_name": "Holiday Shopper",
    "shopping_for_gifts": "true"
  }
}

Summer Campaign

{
  "time": {
    "today": "2024-07-15",
    "month": "July",
    "quarter": "3",
    "hour": "14",
    "weekday": "Monday"
  },
  "geo": {
    "country": "Australia",
    "city": "Sydney"
  },
  "attribute": {
    "user_name": "Summer User",
    "season": "summer"
  }
}

User Segmentation Scenarios

Scenario 7: Account Type Testing

Test variants for different types of user accounts.

Premium User

{
  "geo": {
    "country": "United Kingdom",
    "city": "London"
  },
  "time": {
    "hour": "10",
    "weekday": "Thursday"
  },
  "attribute": {
    "user_name": "Emma",
    "account_type": "premium",
    "premium_user": "true",
    "subscription_tier": "gold",
    "member_since": "2022-01-15"
  }
}

Free User

{
  "geo": {
    "country": "United Kingdom",
    "city": "Manchester"
  },
  "time": {
    "hour": "15",
    "weekday": "Thursday"
  },
  "attribute": {
    "user_name": "James",
    "account_type": "free",
    "premium_user": "false",
    "trial_days_left": "7"
  }
}

Enterprise User

{
  "geo": {
    "country": "United States",
    "city": "San Francisco"
  },
  "time": {
    "hour": "11",
    "weekday": "Wednesday"
  },
  "attribute": {
    "user_name": "Enterprise Admin",
    "account_type": "enterprise",
    "company_name": "TechCorp Inc",
    "company_size": "1000+",
    "admin_user": "true"
  }
}

Scenario 8: User Journey Testing

Test variants for different stages of the user journey.

First-Time Visitor

{
  "geo": {
    "country": "France",
    "city": "Paris"
  },
  "time": {
    "hour": "13",
    "weekday": "Monday"
  },
  "attribute": {
    "first_visit": "true",
    "session_count": "1",
    "referral_source": "google",
    "premium_user": "false"
  }
}

Returning User

{
  "geo": {
    "country": "France",
    "city": "Lyon"
  },
  "time": {
    "hour": "16",
    "weekday": "Friday"
  },
  "attribute": {
    "user_name": "Marie",
    "first_visit": "false",
    "session_count": "15",
    "last_visit": "2024-03-15",
    "premium_user": "true"
  }
}

Churned User Returning

{
  "geo": {
    "country": "Spain",
    "city": "Madrid"
  },
  "time": {
    "hour": "18",
    "weekday": "Tuesday"
  },
  "attribute": {
    "user_name": "Carlos",
    "first_visit": "false",
    "last_visit": "2023-12-01",
    "churned_user": "true",
    "premium_user": "false",
    "reactivation_campaign": "true"
  }
}

E-commerce Scenarios

Scenario 9: Shopping Behavior

Test variants based on shopping patterns and cart status.

User with Items in Cart

{
  "geo": {
    "country": "Netherlands",
    "city": "Amsterdam"
  },
  "time": {
    "hour": "20",
    "weekday": "Sunday"
  },
  "attribute": {
    "user_name": "Lisa",
    "cart_items": "3",
    "cart_value": "150.00",
    "abandoned_cart": "false",
    "premium_user": "true"
  }
}

Abandoned Cart User

{
  "geo": {
    "country": "Italy",
    "city": "Rome"
  },
  "time": {
    "hour": "10",
    "weekday": "Monday"
  },
  "attribute": {
    "user_name": "Marco",
    "cart_items": "2",
    "cart_value": "89.99",
    "abandoned_cart": "true",
    "hours_since_abandonment": "24"
  }
}

Frequent Buyer

{
  "geo": {
    "country": "Germany",
    "city": "Munich"
  },
  "time": {
    "hour": "12",
    "weekday": "Saturday"
  },
  "attribute": {
    "user_name": "Klaus",
    "total_orders": "25",
    "last_order": "2024-03-10",
    "average_order_value": "125.00",
    "loyalty_tier": "platinum"
  }
}

Scenario 10: Promotional Testing

Test promotional variants for different customer segments.

First Purchase Incentive

{
  "geo": {
    "country": "Sweden",
    "city": "Stockholm"
  },
  "time": {
    "hour": "14",
    "weekday": "Wednesday"
  },
  "attribute": {
    "user_name": "Erik",
    "total_orders": "0",
    "cart_items": "1",
    "first_purchase_discount": "available",
    "registration_date": "2024-03-15"
  }
}

Loyalty Reward

{
  "geo": {
    "country": "Norway",
    "city": "Oslo"
  },
  "time": {
    "hour": "17",
    "weekday": "Friday"
  },
  "attribute": {
    "user_name": "Ingrid",
    "loyalty_points": "2500",
    "loyalty_tier": "gold",
    "points_expiring_soon": "true",
    "last_redemption": "2024-01-15"
  }
}

Mobile and Device Scenarios

Scenario 11: Device-Specific Testing

Test variants designed for different devices and platforms.

Mobile User

{
  "geo": {
    "country": "Brazil",
    "city": "São Paulo"
  },
  "time": {
    "hour": "8",
    "weekday": "Monday"
  },
  "attribute": {
    "user_name": "Ana",
    "device": "mobile",
    "platform": "ios",
    "app_version": "2.1.0",
    "push_notifications": "enabled"
  }
}

Desktop User

{
  "geo": {
    "country": "Brazil",
    "city": "Rio de Janeiro"
  },
  "time": {
    "hour": "14",
    "weekday": "Tuesday"
  },
  "attribute": {
    "user_name": "Pedro",
    "device": "desktop",
    "browser": "chrome",
    "screen_size": "large",
    "ad_blocker": "false"
  }
}

A/B Testing Scenarios

Scenario 12: Control vs Variant Testing

Test different versions of content for A/B testing.

Control Group User

{
  "geo": {
    "country": "Australia",
    "city": "Melbourne"
  },
  "time": {
    "hour": "11",
    "weekday": "Thursday"
  },
  "attribute": {
    "user_name": "Chris",
    "ab_test_group": "control",
    "experiment_id": "homepage_cta_test",
    "user_id": "12345"
  }
}

Test Group User

{
  "geo": {
    "country": "Australia",
    "city": "Sydney"
  },
  "time": {
    "hour": "11",
    "weekday": "Thursday"
  },
  "attribute": {
    "user_name": "Alex",
    "ab_test_group": "variant_a",
    "experiment_id": "homepage_cta_test",
    "user_id": "67890"
  }
}

Edge Case Scenarios

Scenario 13: Minimal Data

Test how variants handle minimal context information.

Bare Minimum Context

{
  "attribute": {
    "user_name": "MinimalUser"
  }
}

Only Geographic Data

{
  "geo": {
    "country": "Canada"
  }
}

Scenario 14: Invalid or Unusual Data

Test resilience with unexpected data.

Invalid Time Values

{
  "time": {
    "hour": "25",
    "weekday": "InvalidDay"
  },
  "geo": {
    "country": "Test Country"
  },
  "attribute": {
    "user_name": "EdgeCase"
  }
}

Empty String Values

{
  "geo": {
    "country": "",
    "city": ""
  },
  "time": {
    "hour": "",
    "weekday": ""
  },
  "attribute": {
    "user_name": "",
    "premium_user": ""
  }
}

Testing Workflow with Scenarios

1. Choose Relevant Scenarios

Select scenarios that match your actual user base and business logic.

2. Customize for Your Use Case

Modify the example attributes to match your specific requirements.

3. Test Systematically

  • Start with basic scenarios
  • Progress to complex user journeys
  • Finish with edge cases

4. Document Results

Keep track of which scenarios work as expected and which need adjustment.


These scenarios provide a comprehensive foundation for testing your personalization logic. Adapt them to match your specific use cases and always test both happy paths and edge cases to ensure robust content delivery.